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Exact Method of Designing Airfoils With

Given Velocity Distribution in IncompreSsible Flow

T. Strand*
Air Vehicle Corp., San Diego, Calif.

The inverse problem of airfoil theory, i.e., from a given surface velocity distribution determine the
airfoil shape, is solved by conformal mapping procedures. The method is based upon prior work by
Arlinger, which in turn is an extension of Lighthill’s basic development. It involves the use of least
squares and Lagrangian multipliers to modify the prescribed velocity distribution along a portion of
the lower surface of the airfoil, thus ensuring that the modifications required for profile closure are
minimized. The method developed should be of particular importance for calculating the shapes of
new types of airfoils with high design lift coefficients, i.e., under conditions when conventional lin-
earized theory breaks down. The method is exact in the sense of potential flow theory. Sample cal-
culations are presented for a prescribed velocity distribution having an upper-surface constant-ve-
locity region, followed by a Stratford-type zero-skin-friction portion, designed for Reynolds number
= 3.106 and turbulent flow on both upper and lower surfaces.

Nomenclature
b = constant
Cr = constants
C; = lift coefficient
Cr = moment coefficient
¢ =chord
F = complex potential function (= ¢ + i)
G = portion of the circulation integral

i =(-1)2 :
I' = circulation strength

H = least squares function

M = minimizing function

R = radius of circle
r  =radius of curvature at the leading edge
s = distance along airfoil surface, measured counterclockwise

from trailing edge
t = maximum thickness of airfoil
w = velocity magnitude
z = complex coordinate in airfoil plane (= x + iy)
o = angle-of-attack
¢ = complex coordinate in circle plane (= £ + i)
# = polar coordinate in circle plane
v = angle of the velocity vector anywhere in the circle plane
7 = angle of the velocity vector anywhere in the airfoil plane
¢ = small polar angle in circle plane (e << 1)

Subscripts

a = airfoil plane

¢ = circle plane, or chord
d = design

0 = original, or zero-lift
o = infinity

L. Introduction

A series of new airfoils designed for maximum lift is pre-
sented in Ref. 1. Lift/drag ratios as high as 850 are shown
at design lift coefficients in excess of 2.5, assuming lami-
nar flow, except for a zero-skin friction portion along the
upper surface. The airfoils exhibit maximum velocities in
excess of twice the freestream velocity, and were designed
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by second-order linearized flow theory. With such high
surface velocities the region of validity of linearized theory -
might well be exceeded, precluding good agreement be-
tween theory and experiment. Reference 1 also includes
one graph showing that a discrepancy exists between the
prescribed velocity distribution and that calculated by an
exact direct method (the Douglas Neumann method) for
the contour obtained by the second-order inverse program.
No really satisfactory exact inverse method yet exists for
computing profile shapes from a specified velocity distri-
bution.

Previous authors have tried to develop exact methods
for this problem. For instance, the method given in Ref. 2
is exact in the sense of potential flow. However, here the
velocity distribution must be selected as a function of the
angle in the circle plane into which the profile is mapped,
rather than as a function of the distance along the surface.
This method is therefore of very limited usefulness as a
design tool.

Arlinger? recently extended the ideas of Ref. 2, to be
able to specify the velocities as a function of distance
along the surface. The method involves the subsequent
modification of the input velocity distribution along the
lower surface, so as to obtain a closed curve for the result-
ing airfoil. To assure closure at the trailing edge, three in-
tegral equations, first given by Lighthill, must be satis-
fied. Arlinger employs a three-term sine series with three
unknown coefficients for this purpose. Unless the input
lower-surface velocity distribution is quite close to the
final acceptable distribution, one or more of the three
coefficients become large, completely altering the input
velocity distribution along the lower surface between the
stagnation point and the trailing edge.

In the next section the Lighthill and Arlinger methods
have been further developed by adding a method for mini-
mizing the excursions of the modified velocity distribution
from the given distribution along the lower surface, there-
by obtaining a consistently acceptable distribution that is
as close as possible, in a least squares sense, to that given.
Initially the development in the next section is almost
identical to that of Arlinger.

I1. Theory

A. Caleculation of w, (#)

The coordinate systems and symbols used are shown in
Fig. 1. The airfoil in the z-plane (z = x + iy) corresponds
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Fig. 1. Conformal mapping planes and coordinate systems.

conformally to a circle of radius R in the {-plane ({ = £ +
in). The trailing edge of the airfoil is transformed into the
point (R,0) in the {-plane. The flowfield in the {-plane is
known. The velocities at infinity in both mapping planes
are uniform with magnitude unity and inclination « to the
positive x- and £-axes.

The magnitude wy(s) of the velocity along the airfoil
surface is prescribed. The circulation T' may then be cal-
culated, i.e.,

st 53
T=[ weds~[ w,ds (1)
0

$1

The distance s along the surface is measured from the
trailing edge in a counterclockwise direction. The dis-
tances s; and ss refer to the distance from the trailing
edge to the leading-edge stagnation point and to the trail-
ing edge, respectively.

Let F denote the complex potential function. The rela-
tion between the conjugate velocities at corresponding
points anywhere in the flow fields of the two planes may
be expressed as follows:

wee™ == (2)

Taking absolute values, Eq. (2) yields for points‘ on the
airfoil and circle

w.ds = w,Rdo (3)

where R is the radius of the circle.

To determine expressions for w,, R, and «, we superim-
pose in the ¢-plane a uniform stream, a doublet, and a
vortex in the usual manner, i.e.,

F =e o + R%i%/¢ + ((T/27) Ing (4)

Requiring the rear stagnation point to be at (R,0), we find
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a second expression for the circulation
T = 47R sina (5)

Substitution of this I' into Eq. (4) yields the conjugate ve-
locity on the circle, as follows:

_4F _ 2ie”¥[sin(6 — @) + sina] =~ (6)
ag
Hence,

w, = 2[sin(6 —a) + sina]
}0595n+2oz (M)

V= 8 _"TT/Z
and
w, = —2[sin(6 — a) + sinot]}77 +20=0=2r (8)
V= 9 + ﬂ/2

It is noted that the two stagnation points are located at
6 = 0and 7 + 2a.
Next, define Go; as the following known integral.

5

Goi= [ w,ds (9)
0

Integrating Eq. (3) and employing Eq. (7), a second ex-
pression for Go is determined

T+

Go1 = f w,RdO = 2R[2 cosa + (7 + 2a) sina] (10)
0

Combining Egs. (5) and (10), we obtain an implicit solu-
tion for , i.e., for T == 0,

1
7[(Go/T) — (1/2)] —

tana = (11)

The radius of the circle may now, for instance, be found
from Eq. (5). Thus, w,, R, and the design angle o are now
known and will remain fixed throughout the subsequent
development.

Next let us obtain the correspondence between the sur-
face distances s and R6 in the two mapping planes. Inte-
gration of Eq. (3), using Egs. (7) and (8), yields the fol-
lowing relations, expressed in a form convenient for nu-
merical calculation

s
f w,ds = 2R[cosa —cos(0 —a) + 6 sinc ]
0

for 0 =s = sy
0=60=<7+2a, (12)

f w,ds = 2R[cosa + cos(6 —a) —(§ —7 — 2a) sina]
81
for $4= 8 = 83
T+ 20 =s6=2r (13)

The left hand side is known. The right hand side is deter-
mined numerically with 6 being the unknown. It should
perhaps be mentioned that the sum of the above two inte-
grals equals 8R (cosa + « sina) when the integration is
performed around the circle. The sum is therefore not in
the limit equal to the circulation integral T'.

From Egs. (12) and (13), the correspondence between
the surface distances s and R# is known. Specifically the
given distance sz from the origin to a point on the lower
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surface of the airfoil yields a certain value for 2. We fur-
ther note that w, is now also known as a function of .

B. Modification of w,(6)

The set of w, values as a function of § must be modified
in a certain correction interval if the airfoil shall close at
the trailing edge. The set of w,, determined above, will
here be modified in the interval

8258583, 0259$27f
The boundary conditions state that w, = w, = 1 and 7
= y = g at infinity. Hence, using Eq. (2),
limdz/dt = 1 (14)

which means that z may be expanded in the following se-
ries.

z:§+a0+—§l+E§+ (15)

Differentiating, we find

dz 1 _ay  2ay dar (16)

E: L_z €3 .. d§

Solving Eq. (16) for dF/dz, and making use of Eq. (4),
we have

dF dF 2a,
7:—2[1+z2+§3+ ]
i iTe’®  Rlgite a, | 2a, ]
=€ [1+ 27C T ][1+§2+§ + ...
o Tei® 1
= ¢iv [1 + szg +0 (gﬂ 17)

from which, by Eq. (5)

w,e T =1 +
. =

_ ) s s
R(-2 sin a€+ i sin2a) 40 (%) (18)

It is necessary to split dF/dz into two separate func-
tions since only w, is prescribed. We therefore expand the
above expression into a product of exponential functions;
i.e., welet

w'ae"i(f"a): exp(h_{_h.’.ﬁi_’_ )

£ g2 g3
:(1+%+?b£5+ )(1+Z§+2b§24+ )
X (1+%;L+
:1+%—+0(—§13) (19)
Thus,
lnwa—i(f—a)=%+%+... (20)
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On the circle, { equals Rei?, and Eq. (20) becomes

Inw, —i(T —a) = (by/R){cos8 —i sinb) +
(bo/R%)(cos260 —i sin28) + . ..  (21)

Hence, defining b1 = b1 + ib12, we obtain the following
Fourier series for In w,

Inw, = (by/R) cosf + . . .
+ (by/R) sind + . . . (22)

where the first two terms only in the series are shown.
The three first Fourier coefficients are then given by

27
= —71;f Inw,do

1
___1 el
R - j; Inw, coséde
by 1 ¥
22 = i
= nj;) 1nwa sinfd e (23)

Comparison of Egs. (18) and (19) yields by inspection
b11 = —2R sin?« and b2 = R sin2«. Substitution into Eq.
(23) finally results in the following three constraint equa-
tions for w,

2r
f Inw,dé =0
0
27

J  Inw, cos6dd = 27 sin’e
0

2T
f Inw, sinddf = 7 sin2« (24)
0

The above integral relations were derived previously for

= 0 in Ref. 2. The first integral is a consequence of
choosing the velocity magnitude equal to unity at infinity.
The latter two integrals ensure that the airfoil is closed at
the trailing edge.

By Eq. (21), 7 — « may also be expressed in a Fourier
series. It is then easily shown that the constraint equa-
tions involving 7, which correspond to Egs. (24) for In w,,
are:

2r
[ 1d6 = 2na
9

27
f T cos6df = —7 sin2a
0

27
[ 7 sin6d6 = —27 sin’a (25)
0

Equations (25) are not useful in the present develop-
ment except, maybe, for serving as a check on the accura-
cy of the set of 7(#) obtained below.

Equations (24) are formally identical to those given in
Ref. 3, when the integrations involving w, are performed.
These relations state that w, must be modified to become
acceptable. In Ref. 3 this modification is done by expand-
ing the given w, in a three-term trigonometric series in
the chosen correction interval (the entire lower surface).
The three constant coefficients are then determined by
substitution into the three constraint equations. It was
found that this method is unsuitable, because the three
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Fig. 2. Velocity distribution for a sample case, I' = 68.

Stratford distribution calculated for Re = 3.108.

constants tend in general to become very large, causing
large undesirable waviness in the modified velocity distri-
bution along the lower surface. With the modified velocity
distribution being far from the desired input distribution,
the resulting airfoil shapes are quite unsatisfactory. How-
ever, the method will yield satisfactory results whenever
the input distribution on the lower surface happens to be
close to the accepted distribution, which is the case for
the airfoils illustrated in Ref. 3.

We now depart from the development of Ref. 3, and use
a least squares method to ensure that the modified veloci-
ty distribution remains as close as possible to that origi-
nally prescribed. Note that the initial point of the correc-
tion interval on the lower surface will not be the leading-

_edge stagnation point, but will be prescribed, i.e. s2 > 7.

Let us then modify w, through a system of n(n = 10,

say) linearly independent functions f,(f), where k =

1,2,3, ..., n, in the interval between # = f and 2z, by de-
fining
% Cufpl®
W, = w,wek=1 (26)

‘Here wyo denotes the prescribed velocity distribution,-

and the C,’s are constants to be determined. It is now de-
sired to minimize the excursions of w,(#) from the given
Wqo (8). A new function H(Cy) is therefore defined as fol-
lows:

H(Ck):fh [ln u“j ]Zdezfe:”[éckfk(e)]zde @7)

82
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where Eq. (26) has been used. The above function is a
measure of how well the modified velocity distribution
matches the prescribed distribution in the correction in-
terval.

To assure a smooth transition at fs, and to tie down the
new function at 2=, we shall require that

dw,, dw, dw,, “ J
o = do [ 6.+ Wao 24 Cuf

.92,21r 89,27 92,211'
(28)

where the prime superscript indicates differentiation with
respect to 6. Equation (28) then becomes ZC,f,’ = 0 at 6
and at 27.

Introducing Lagrangian multipliers A1, A2, A3, A4 and
\s, and defining another function M, we let

27
M(C A, Mg Ay ko h5) = H(C,) + x1f0 lnew,d6
2r
+ 227 sin’e + [ lnw, cos6do]
0
2r
+ Ag[-7 sin2a + [ Inw, sinddo]
0

n n
+ M LCF |+ A 2GSy |
k=1 65 k=1 r

2n
aw ,,d6 +

= [ T cun@tas + nif

82

27 1
fe gck (6)do]
2

27
+ 227 sin?e + [ Inw,, cosédo +
0

2r N

J CLf(0) cosedo]
0y k=1

27
+ Ag[~7 sin2a + [ Inw,, sinddé +
0

2 1
J gckfk(e) sinéd6]
92 =
+ 2y 20Cf |+ s 22 Cufy] (29)
k=1 92 k=1 2r

The extrema of M is obtained when the function fulfills
the n + 5 separate equations

oM aM  aM M aM _ 8M

_— = e e 0

aC, — oy 9, Oxy | an ans

ko= 1,2,3,.,1’1 (30)
The above expression forms a determined system of linear
algebraic equations for the determination of Cy,Cs,...,C,
and )\1,7\2, . ,)\5.
Any set of orthogonal functions might be used for f(6),
as long as fr(f) and fr(2x) vanish. The following system
was selected

Fu(6) = sinkv E=123,..n (31)

Here, by definifion,
v =m0 —0,)/2m — 8,) (32)

Itisnoted that 0 < v < wforfy < 6 < 2.
The coefficients C, determined in this manner are next
substituted into Eq. (26) to yield the modified w, distri-
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bution in the correction interval. Equation (13) is then
used in reverse in this interval te determine s with 6
known. Thus an acceptable modified w,(s)} is obtained.
This w, automatically satisfies the circulation integral.

C. Airfoil Shape

To calculate the airfoil ordinates, the inclination angles
of the velocity vectors along the surface must first be de-
termined. With w, known along the circle, + may be cal-
culated? from Poisson’s integral, i.e.,

1 o 6 -8
T(0) = a + 2_7,f0 lnw,ctn 3

ae’ (33)

Here the piincipal value of the integral must be taken at
= ¢’. It is noted that there exists a discontinuity in 7
equal to = at the leading-edge stagnation point, i.e., at ¢
= 7 + 2«. There is also a discontinuity in = from § = 2rn
to 0, when the trailing edge of the airfoil is required to
have a finite angle, i.e., when w, at the trailing edge
equals zero. If the velocity at the trailing edge is non-zero,
the angle 7 at § = 2x equals that at § = 0. The airfoil then
exhibits a cusp at the trailing edge.

The shape of the airfoil is obtained from the following

integrals
x=7% [ costds (34)
0
Yy = :Ff sinTds (35)
0

The plus and minus signs apply to 0 < 6§ < v + 2« and =
+ 20 £ 0 < 2, respectively. The resulting airfoil appears
in the zero-lift position as far as our axis system is con-
cerned. A simple rotation of the axes yields the surface or-
dinates measured from the chord, defined in the usual
manner as the longest distance between a point on the
leading edge and the trailing edge point.

D. Off-Design Velocity Distribution, Lift, and Pitching
Moment

Remembering that the velocity at infinity equals unity,
the lift may be expressed as both pI" and pCjrc/2 where Cy
and ¢ denote the lift coefficient and the chord, respective-
ly. Hence, using Eq. (5)

C.=2T/c = 8n(R/c) sinx (36)

In the above development the angle-of-attack « is mea-
sured from the x-axis. The x-axis coincides with the zero-
lift direction of the airfoil. Conventionally the angle-of-
attack is measured from the airfoil chordline. The incre-
mental A« (always negative) between the x-axis and the
chordline therefore corresponds to the usual angle of zero
lift. In the numerical results presented in the next section
the angles of attack shown, térmed a., are equal to o +
A to conform to conventional practice.

The off-design velocity distribution is easily obtained by
noting that Egs. (7) and (8) may be rewritten as follows:

we= 4 cos(g - a) sing (37)

Substitution of Eq. (37) into Eq. (3) yields

0 . (8 Rdo
w,= x4 cos(—z——a> sm(§> as (38)

DESIGNING AIRFOILS IN INCOMPRESSIBLE FLOW

M OWDNGU DS - = |
mMEEEIBI T L2BNBB00R2%80 |5 |S
3 Saooﬂmmwoo—o’ooumw~& @
a QYW —X~N AOUHIGRTODD LD =
) "
“lonnonboons-Lssbbogoo | L |5
u ogmuug§8o——oomggma s |8
~| ogoilgas—daacs 2
o o DNO—POBWURONWNRUNT O N :
Qb Npanp RPN ~00 B0 <Y
3| 0GB I3BBR AL monoan-0 | 5 |2
AION—O0O=RONNNDUOBANDOL ]
2 OCONORHOP—NUNONPDO O® -
ES T T T e
0|05858828R8300000gk00 |X 13
Isf=3-34 1] o=
82~~mo&mm§3%$§3300 ® |8
O UNOLUU—RNND RGNON
10
Hf
y
. : : . . .
o] 10 20 30 70 80 90 100
X -
—IO‘~ '

Fig. 3. Airfoil shape corresponding to velocity distribution
of Fig. 2, Re = 3.105, " = 68. C,, = 1.38 o = 8.7°, Crnp = —0.05,
t/c = 0.155,r/c = 0.9 (t/c)?, L/D =~ 96 (turbulent ﬂow).

- We shall now retain the same mapping function, i.e., R,
0, and s remain unchanged, and change the angle of at-
tack. The velocity distribution w, at an arbitrary angle «
is, therefore, given in terms of the design distribution wgq
and design angle of attack agy by the following relation.

cos[(6/2) - a]

cos[(6/2) —a,] (39)

This expression was given previously for ey = 0 in Ref. 2.
The velocity distribution of the airfoil at any off-design
angle-of-attack is now immediately known as a function of
s. Specifically, the velocity distribution at zero lift is ob-
tained by setting o = 0

We= Wy

cos6/2

cos[(6/2) — a,]

With this information the general expression for zero-
lift pitching moment coefficient, derived in Ref. 2, may be
used.

Wy (40)

= Wqy
CL=0

2 27
Cro = -% Inw,| sin26de  (41)
1]

Cr=0

II1. Calculations

The expressions presented in the previous section were
programmed on a CDC 3600 high-speed digital computer
at the University of California, San Diego. A sample
upper and lower surface input is shown in Fig. 2. It is con-
venient to attempt to have the chord length of the airfoil
become approximately 100. This will in most cases corre-
spond to a total upper surface length of around 106 and a
lower surface length of around 100. Then the lift coeffi-
cient C;, ~ I'/50 by Eq. (36). It is also convenient, as
pointed out in Ref. 3; to be able to change I' without
changing the input velocity distribution. In this case a
contraction or expansion of the distance intervals betweén
points 2 and 3 on the lower surface must be performed by
the computer, so as to have

Asj——g%—Asj (45)

where, by definition

G = [ ‘w,ds
0
. (46)
623 = f wads
5
The n + 5 linear algebraic equations [Eq. (30)] may
easily be shown to reduce the foillowing matrix equation to
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be solved for Cy, .. .., C,and Ay, . . ., As. Note that the ma-
trix is symmetric.
i 2 1(cosf, + 1) 1 sing, ]
m 0 0 0 0 Tl e v e A B
2(cosf, ~ 1) 2 siné.
0 2 2
0 7 0 0 0 AT a2 2
2 3(cosfy + 1) 3 singy ,
1] 0 T 0 0 3 5 — A3 95— Az 3 -3
0 0 0 0 ete. 0 4(cosf, —1) 4 sing, 4 4
i 16 —A? 16 —A2
2 5(cosé, + 1) 5sinb, .
0 0 0 0 i 5 95 — A2 %5 - A2 5 =5
ete.
2 2 2
1 0 3 0 5 etc.
———~1 (closf)jl; 1) etc.
| ete. J
rcy 7 i} 0 ]
Cs 0
Cy 0
ete. ete.
27
X |{ay | = —%fo Inew ,4d6 (47)
s —M - l—fh Inw 4 cos6de
A A, a0 ‘
7 sin2a 1 p2r . :
As —‘—A—— - A_‘[O Inwao sinfd6
Ay 0
L2As L 0 |

Here A = 2 — 03/w, by definition. )

Some care must be taken in the evaluation of the inte-
grals on the right hand side of the above equation. From
the evaluation of 7 (deseribed below), it was determined
that the magnitude of the input slopes dwao/ds at the
stagnation point must be equal on the upper and lower
surfaces, otherwise the integral for r is not convergent.
Thus in the immediate neighborhood of the stagnation
point we may write, for, respectively, the upper and lower
surface

Wo =  (dw/ds | o )s = 59) (48)

Integration of Eq. (3) yields (with the positive dngle p in
the circle plane measured from the stagnation point)

we(0) = kyufl & kgll —0(u%)]

for 7+ 20 —e<fH=7+2a + € (49)

where, by definition

kI:(ZRM

) 1/2
cosa
ds

%y = (1/6) tana

S=SI

(50)

Substitution of the above expressions for w.o into the
integrands on the right hand side of the matrix equation

J. AIRCRAFT
yields, with e < 1,
T+2 0+€
) Inw,d6 = 2¢ In(ke) —4e + —1—+k2k—2€— In(1 + kye)
T+L ™€
ﬂf. In(l — k.e) (51)
- 2k2 n — R9€
T+2 QdE
Inw,, cosfdf =i—cos2a {25 In(kie) —4de +
T2 0 ~E
1+ kye In(1 + kge) — 1 - Rge In(1 — kze)}
k2 k?
. k2262 -1 _ _ €
+ sin2a TR In(1 — kye€) 7l
2, _
—522—2-22—1 In(1 + kpe)}  (52)
T+l QtE : .
Inw,, sinfdf =— sin2a {ZE In(kie) —4e +
T+2 =€
1R 1001 + kye) - L k2€)}
Ry ky
Byle? — 1 €
r2 = = =
+ cosza{ T In(1 + kye) + %
B =1
S X ~ke)}  (53)

After solving the matrix equation, the modified set of
wy's [Eq. (26)] is next employed to calculate a new set of s
for s < s < s3, using Eq. (13), while maintaining unal-
tered the set of 6. No iterations are needed.

Special expansions are also required to evaluate the r-
integral. Here it is first convenient to express 7 in an
equivalent form, namely

, 2 wa(e')] 66",
T=a+f0 ln[wd(e) ctn 5 das (54)

A straight line is then drawn between neighboring points
of the set of w, and also of the set of ctn[(§ — 67)/2]. Thus,
the integral is reduced to the type

Z)fM Infa(6) + 5(6)x1[A(6) + B(6)-x}ix]
0

Closed form expressions of this integral are readily obtain-
able.

In Fig. 2 a trailing edge velocity of 0.95 and a stagnation
point slope dw,/ds = 0.6 have been used. A Stratford*
zero-skinfriction distribution for Re = 3.10% was calculat-
ed for the dft portion of the upper surface. Turbulent flow
was assumed for the whole airfoil. The so-distance was
choseén to be 106.3 (s; = 106). The dashed line on Fig. 2
indicates the input velocity distribution along the lower
surface. The acceptable (modified) velocity distribution
along the lower surface, as calculated by the computer, is
given by the heavy line. It was found that the irregulari-
ties (small waviness) in the curve could be minimized by
using a large number of terms in the series expansion. The
curve shown was obtained with a 35 X 35 matrix equation
(n = 30). The wave amplitudes were approximately dou-
ble of those shown when using n = 20, instead of n = 30.

The coiresponding airfoil is presented in Fig. 3. It has
the characteristic humpback look of the Liebeck-Ormsbee
airfoils.? The lower surface is slightly convex in front with
a reflexed portion near the trailing edge. The lift coeffi-
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Fig. 4. Off-design velocity distributions for the airfoil of Fig.
3.

cient is 1.38 with o, = 8.7° and a maximum thickness
ratio of 0.155. The zero-lift pitching moment coefficient is
a satisfactorily low —0.05. The predicted turbulent-flow
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Fig: 5. Effect of varying I' on minimizing M-function.

lift/drag ratio 1s 96, which is at least 50% higher than that
obtained by tests on conventional airfoils at corresponding
lift coefficients. Since the shape of the lower surface is
mostly convex, the angle-of-attack range for attached flow
should be satisfactory for the sample ajrfoil.

- Off-design velocity distributions are presented in Fig. 4.
The highest angle shown (a, = 9.7°) is one degree more
than the design angle of attack. The profile should there-
fore exhibit separated flow over the entire aft portion of
its upper surface, rather than the distribution shown, due
to boundary layer effects. The design angle of attack does
not, however, necessarily correspond to the maximum lift
coefficient of the profile. Additional lift at angles of attack
beyond the design lift coefficient might be expected be-
cause of the so-called “elastic” property of the boundary
layer displacement thickness, found experimentally by
Stratford. The design lift coefficient must therefore be
considered as being the limit (maximum) coefficient in
the essentially linear range of C;, vs «. The velocity distri-
bution for the lowest angle shown on Fig. 4 indicates a
negative Cpmo, which is in accordance with that calcu-
lated by the Lighthill integral. The off-design velocity dis-
tributions appear to be both reasonable and satisfactory
for a turbulent flow airfoil. The maximum velocity (of the
order of 1.5) on the upper surface for low positive lift coef-
ficients is higher than the maximum velocities of the
NACA high-speed sections, but not much different from
those of the earlier NACA four- and five-digit series, still
used in many aircraft and helicopter applications. Pre-
sumably, the advantage of the sample profile over the
NACA four- and five-digit airfoils of corresponding thick-
ness ratio would lie in its predicted low drag up to the

Fig. 7. Effect of varying I on airfoil shape.
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highest lift coefficient in the linear range (C; = 1.38 at
the design Reynolds number of 3.108). This should be a
direct result of taking the major portion of the upper-sur-
face velocity decrease at a far forward location where the
boundary layer is still relatively thin. The low drag would
be obtaineéd from the zero-skinfriction feature along the
dupper aft portion of the airfoil. The decreasé in friction
drag would possibly be partially offset by a slight increase
in form drag due to an increase in the boundary layer
thickness. Note that there exists a favorable pressure gra-
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Fig. 9. A different lower-surface veloéity distribution, Re =
3.108, " = 71 for the acceptable distribution.
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Fig. 10.  Airfoil shape obtalnéd from velocity distribution of
Fig. 9. Re = 3.105, T = 71, C, = 1.44, o = 8.9°, Cpoo = —0.037,
t/c=0.07,r/c ~4 (t/c)2 L/D 100 (turbulent flow)

dient, conducive to laminar flow, along the upper surface
ahead of the Stratford distribution at all angles of attack
up to the design angle.

In every calcilation attempted, it was found necessary
to first perform a survey with T as the variable. The result
of the survey, leading to the choice of the sample profile,
is presented in Fig. 5, where the minimizing function M is
plotted vs T'. When M is small, the modified velocity
distribution will be close to the glven input distribution
on the lower surface. Also indicated in the figure is the
rather small decrease in M due to the use of an increased
number of terms in the series expansion for the velocity.

The effects of reducing I from 68 to 66, using the same
input as before, are given in Figs. 6 and 7. The sensitivity
of the shape of the lower-surface of the profile to relatively
small changes in the lower-surface velocity distribution is
noted. It was also found that the upper surface shape is
essentially unchanged by any alterations in the acceptable
distributions on the lower surface. This may be explaired
by the fact that the angle of attack, as determined from
Eq. (11), is not greatly affected by minor changes in T.

The slopes of the airfoil surface near the trailing edge
should probably; for a good airfoil, show a somewhat regu-
lar variation with aft distance, since the inviscid flow ef-
fect of rapid changes in slopes there might easily be hid-
den inside the relatively thick boundary layer. Figure 8
indicates that for the sample airfoil (I' = 68) the slopes
are a linear function of distance. However, a small change
in T from 68 to 66, destroys the linearity as indicated in
the figure.

Symmetrical Joukowsky airfoil, t/c=0.
— ——« Fiat piate airtoil
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Fig. 11. Velocity distribution on the lower surface of a flat

plate and of a symmetrical Joukowsky airfoil of 10% maxi-
mum thickness ratio.
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Next, a lower-surface distribution (Fig. 9), identical to
that used to design the airfoil tested by Pick and Lien,®
was used as input to obtain a thin airfoil (Fig. 10), having
the same upper-surface Stratford distribution as that
shown in Fig. 2. As expected, there were essentially no
changes in the upper-surface contour. The lower surface
exhibits a large amount of concavity. The large slopes of
the surface inside this cavity are not, of course, conducive
to attached flow at the lower angles of attack. Thus, as
found experimentally by Pick and Lien, separated flow
exists in this region at angles of attack lower than 4-5°
leaving a range of only about 5° of good flow. This is, how-
ever, a feature of all highly cambered thin airfoils in use.
Encouraging results were reported by Pick and Lien in
their experimental investigation of the validity of the
Stratford incipient-separation criterion as applied to the
design of airfoils.

Additional test data of a very encouraging nature have
been obtained by Bingham and Chen® and Liebeck.?+

Figure 11 has been included as an aid in selecting the
input lower-surface velocity distribution. To obtain an al-
most flat lower surface, it is probable that an input distri-
bution close to that of a flat plate at the same angle of at-
tack would have to be used. Similarly, to obtain a slightly
convex lower-surface contour, an input distribution close
to that of a Joukowsky symmetrical airfoil would have to
be used.

IV. Conclusions

The Lighthill-Arlinger method has been extended by
the use of a least squares technique combined with Lag-
rangian multipliers to obtain a lower surface velocity dis-
tribution that will consistently produce acceptable

+ This paragraph and these references were added to the text
after the paper had been returned to the author for minor revi-
sions.
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airfoil shapes. The method is exact in the sense of poten-
tial flow theory, and may therefore be used to advantage
to calculate the shapes of new airfoils with high design lift
coefficients, i.e., under conditions when conventional first-
and second-order linearized theory breaks down. Thus a
valuable tool for future design of specialized wing sections
has been developed.

The new method has been employed in a sample calcu-
lation to find the shape of several high-lift low-drag air-
foils, having lift/drag ratios of around 100 in all-turbulent
flow at design lift coefficients of around 1.4. In the sample
calculation the stress was on showing that airfoils of rea-
sonable shape could be determined through the new
method. No effort was made to maximize the design lift
coefficient or the lift/drag ratio. Much larger design lift
coefficients and L /D’s are available.
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